Interactions between pinnipeds and fisheries: the Baltic grey seal case

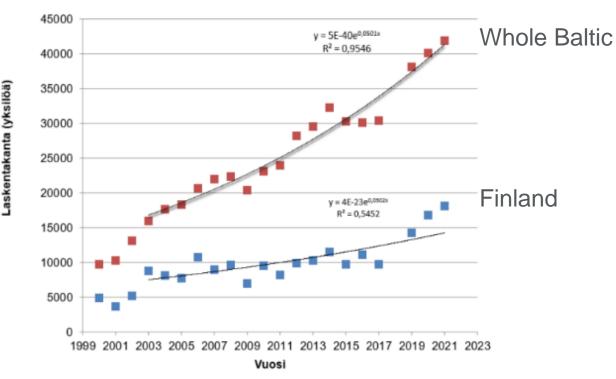
Petri Suuronen
Natural Resources Institute Finland (Luke)

The Baltic Sea

- Baltic Sea is an arm of the Atlantic Ocean
- Surface area: 377,000 km² (146,000 sq mi)
- A shallow brackish water sea
- About 85 million people live in the Baltic drainage basin

Grey seal (Halichoerus grypus)

- Grey seals occur in the entire Baltic Sea, but the population is densest in the northern regions:
 - center of distribution is on the coasts of Finland, Estonia and Sweden
- Largest and most common seal species in the Baltic.
- Size of population in early 1900s ca 100,000 ind.
- During 1900-1975 population was depleted down to ca 4000 individuals:
 - > extensive hunting
 - hazardous substances at sea



Population recovery started in 1980s

- Grey seal population started to recover very fast in mid-1980s
- Since early 2000s, annual growth rate 5%
 - recently, population has expanded also in the southern Baltic annual increase ca 17%
- Current population size ca 60,000 ind.
- The population keeps growing.

Hallin laskentakanta Itämerellä ja Suomessa

Number of grey seals counted in 2003–2021 in the Baltic Sea (red squares) and in Finland only (blue squares).

Fishing gears attract seals – risky dinner

DVR Video Snapshot Välipesä-kamera1: Hylje kamerat [Problem Reported] 14. foukota 2007, 13:31:33 (Normaskiaika) Event No event selected

Video Capture Size: 704 x 576 pixels
Video Frame Time: 14.5.2007 13.31.33 (Normaaliaika)
Media Input Name: Valipesa-kamera1
DVR Location: Hylje kamera1
DVR Serial #: KBAAP1455-5308
DVR Station ID: 0

Incidentally caught grey seals

- In early 2000s, numbers of incidentally caught grey seals was ca 2000 ind. annually (mainly males).
 - > since then, numbers may have reduced because coastal fisheries are declining (+ zero-bycatch-policy)
- Seal-proof traps are widely used along Baltic coast:
 - > smaller risk of entanglement compared to traditional trap-nets
 - ➤ little information of how many seal caught in gillnet fisheries
- No analysis of effect of incidentally caught seals on population has been made:
 - ➤ large incidental catches are not necessarily unsustainable
 - > many pinniped populations can withstand large bycatches
 - > seals have early maturity and high reproductive rates

Vanhatalo et al. 2014. By-Catch of Grey Seals (Halichoerus grypus) in Baltic Fisheries—A Bayesian Analysis of Interview Survey. PLoS ONE 9(11): e113836. doi:10.1371/journal.pone.0113836.

This is a common sight – catch destroyed by grey seal

Kauppinen, T., Siira, A. & Suuronen, P. 2005. Temporal and regional patterns in seal-induced catch and gear damage in the coastal trap-net fishery in the northern Baltic Sea: effect of netting material on damages. *Fisheries Research* 73: 99-109.

Seal-induced catch and gear damage

- With growing seal population, seal-induced catch and gear damages increased dramatically in coastal fisheries.
- There are also various type of hidden losses:
 - > fish are taken from gear without a trace
 - > seals are scaring fish out from fishing areas
- The seal-fishery conflict has expanded over the whole Baltic region
- Fishers lack the tools to handle the situation
- This has contributed to wide-scale frustration and also willingness to exit fisheries livelihoods

Seal predation on fish stocks

- Seals and fishers compete for the same fish resources
- Grey seal predation on fish stocks is substantial and can pose a significant threat to stocks that are either in decline or endangered
- Fishers have a strong opinion that seals have major impact on all commercially exploited fish stocks
- Nonetheless, fish populations are governed by multiple natural and anthropogenic processes

Suuronen, P. & Lehtonen, E. 2012. The role of salmonids in the diet of grey and ringed seals in the Bothnian Bay, northern Baltic Sea. *Fisheries Research* 125-126: 283-288.

Hansson et al. 2018. Competition for the fish – fish extraction from the Baltic Sea by humans, aquatic mammals and birds. ICES Journal of Marine Science, 75: 999–1008.

Stomach content of a grey seal

Seals are spreading parasites harmful to people and fish

- Grey seals are final host for two parasitic nematodes: seal worm and liver worm
- Baltic cod that are infected generally have a deteriorated condition
- The increase in parasite infection has coincided with the growing grey seal population

Lunneryd et al. 2015. Sealworm *Pseudoterranova decipiens* infection in grey seals *Halichoerus grypus*, cod *Gadus morhua* and shorthorn sculpin *Myoxocephalus scorpius* in the Baltic Sea. Parasitology Research, 114: 257–264.

Mitagation technologies – seal-proof fishing gears

- Mitigation technologies intensicely developed to support fishing sector in the conflict.
- Seal-proof fishing gear modifications have been successful in trap-net fisheries → pontoon trap
 - ➤ the likelihood of incidental capture of seal reduces dramatically with seal-proof gears (= seal-safe gear).
- These actions, although helpful, have been inadequate in resolving the overall problem
- With the growing seal population, the conflict is intensifying and coming increasingly more difficult solve

Cod pot

Seal-proof gear solutions

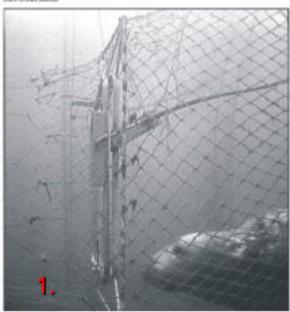
Suuronen et al. 2006. Reduction of seal-induced catch and gear damage by modification of trap-net design: Design principles for a seal-safe trap-net. *Fisheries Research* 79: 129-138.

Königson et al. 2015. Cod pots in a Baltic fishery: are they efficient and what affects their efficiency? ICES Journal of Marine Science, 72: 1545–1554.

How to capture a seal alive?

Lehtonen, E. & Suuronen, P. 2010. Live-capture of grey seals in a modified salmon trap. *Fisheries Research*, 102: 214-216.

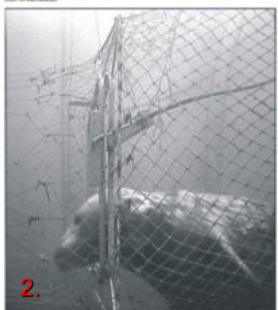
A grey seal captured alive



(VK Video Snapshot

ESCHANGE CONTROL Formus 32000 36 Settings or posturing contingue the T32 Security Tennish 2008, 7 22 20 (Remarks).

Seef Fig. control solution.


IDM Video Limpolati
E Contripo commontifica Liminos 30000 M 2010 più esperiale proietà propins 7 2004 per 15 septe 2004, 720 20 (Secolate) Gardino contratación

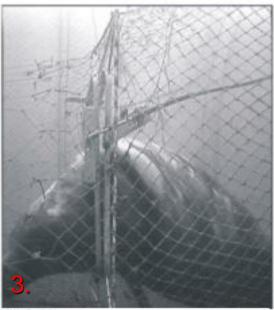
Viter Carbon Star. TH 4 (TV pries Viter France Time 28 4 2008 F (2028 Restarba) Redistryat/Saria: Peli-Samus 3 UNI (Logistic Hylle Sameral)

IVS Video Snapshot

E. Completoned Fest spines 1200 to 25 halo a packer purella packer 1222 and 25 says 200 f 1220 Festales. Exet his contratable

200 Victor Sequence

6 Commission and Association ACCIDENT Office of parties on metaposis to 7 22 2% are
201 mode 2006, 7 22 30 Messages.

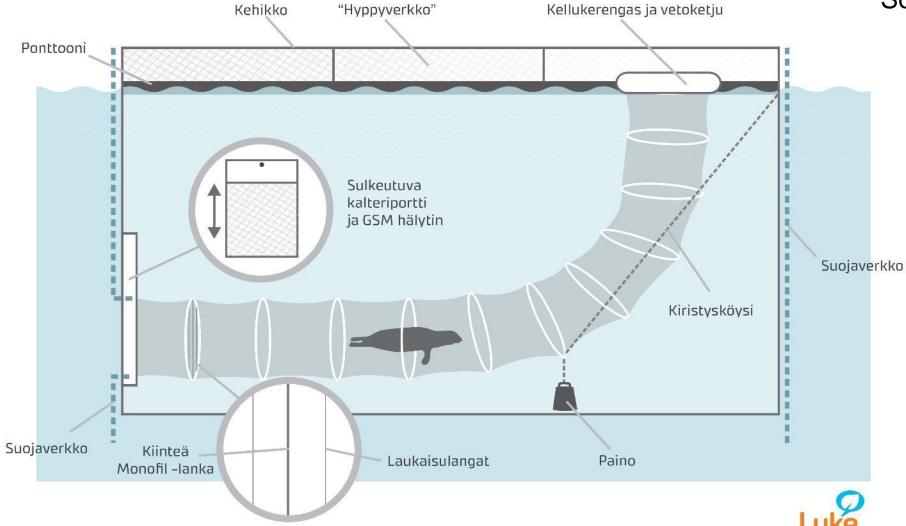

Each Text constitutionals.

Video Captina Siaz. 154+575 piecis Video Frame Sime 253 (2007/25 3) Alexandra Media Ingal Trams Produktomics 3 (2007), codion. Inda Harmond

DVI Video Snapshot

Ethomys tenned fruit names 5000 36 36 hale a packer ja siertiones de 7003 4 as 35 notes 2006, 700 27 Americkie Eurot Novemberschaft

DAL Video Empelhat II Correspo tamenthrea tamena 2000 N. 20mpa na perian ya milita yani mi 7.22 ini an 25 ngohi 2001, 1223 i Reseator Salah San membasakahi

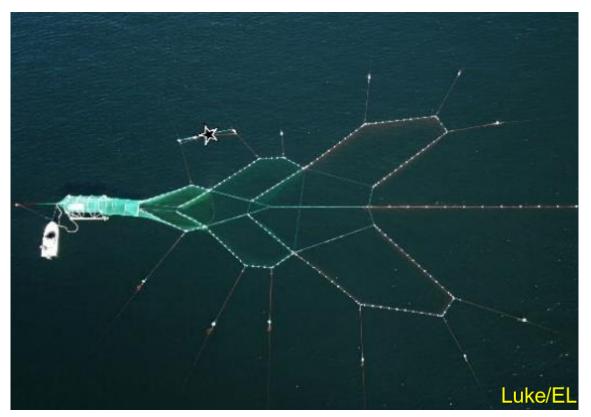

Vote Cache Sta. The STR period Vote Frame Time 21:5 (2007-22) 21 Resizatio Reads (bud Frame Prior America 2 CHR Louder Wide Framed CHR Louder Model 5-528

Hylkeenpyyntimenetelmä

kalanviljelyn tarpeisiin

Seals attack also aquaculture cages: Solutions tested

Seal deterrents in coastal trap-net fishing


- Promising results obtained by acoustic deterrent devices
 (ADDs) to keep seals away from the vicinity of a gear
- In Baltic salmon trap-net fisheries, deployment of ADDs indicated an average increase of 64 % in salmon catches
- Furthermore, with ADD the likelihood of incidental capture of a seal reduces dramatically
- ADD is a useful and economically viable mitigation tool for reducing seal-induced catch losses
- Potential risks of ADDs to wildlife; an issue.

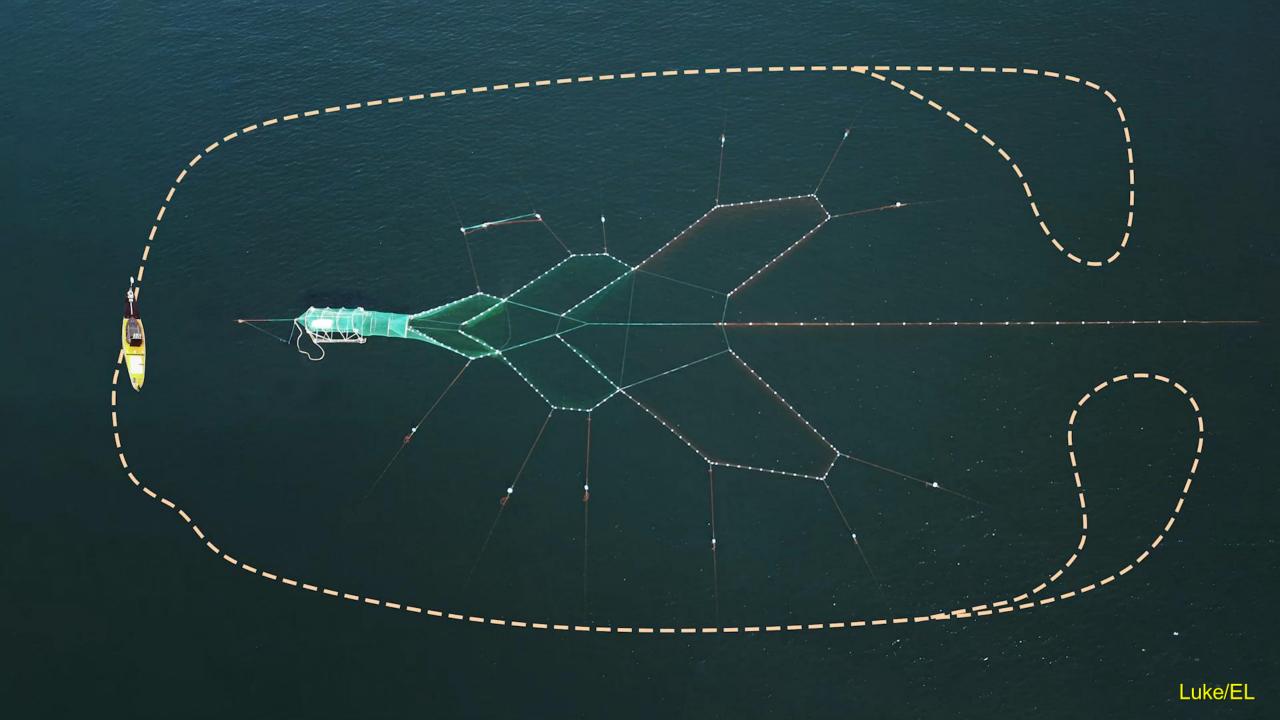
A pontoon trap-net equipped with a mobile ADD

Seal deterrent marked with a star symbol

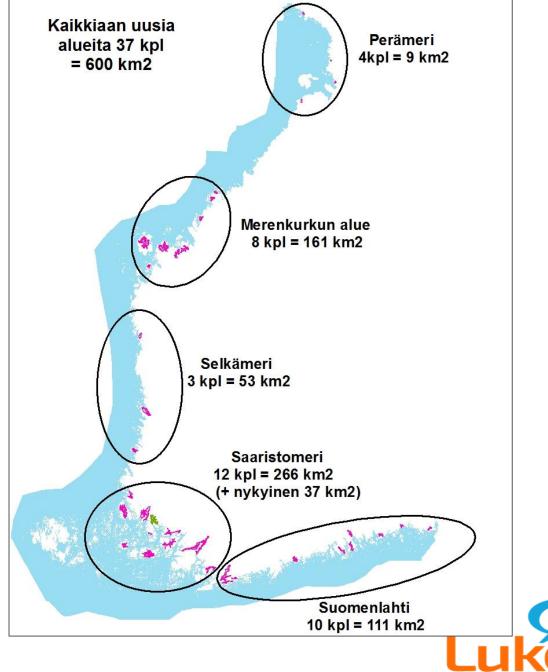
Mobile ADD

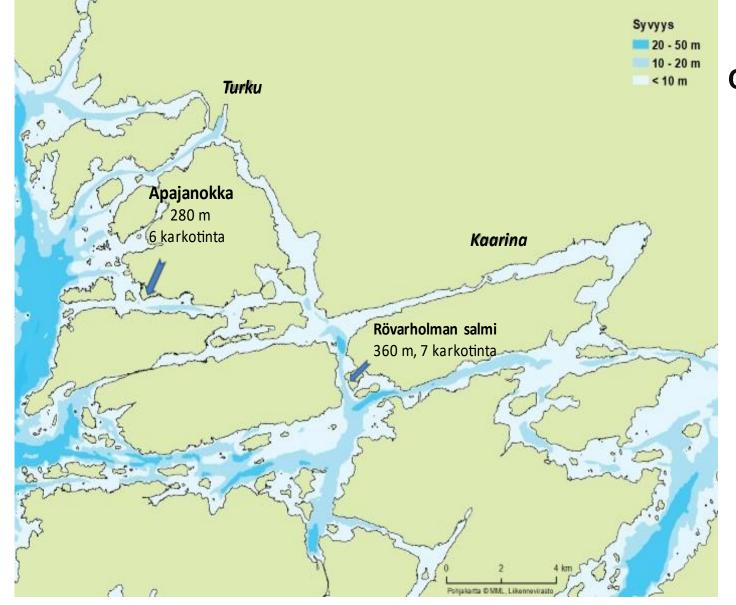
Lehtonen, E., Lehmonen, R., Kostensalo, J., Kurkilahti, M. & Suuronen, P. 2022. Feasibility and effectiveness of seal deterrents in coastal trap-net fishing – development of a novel portable deterrent. *Fisheries Research, In Press*

Alternative energy source for an ADD – solar and wind



Autonomous mobile deterrent – under development


Prototype


Creating seal-free fishing areas

- There are important in-shore fishing grounds that could be "protected" by closing with ADDs the straits leading to them.
- This would help all fishers fishing inside the area.
- At the same time, it would reduce the incidental capture of seals.

Closing the straits

Population control by hunting

- Hunting quotas are small and not fully utilized.
 - Hunting rules are strict (season/areas).
 - Seal hunting is difficult and time consuming.
- EU trade ban on seal products → seal has no economic value:
 - > this has caused poor motivation for hunting
 - few hunters

A striking conservation success and a source of conflicts

- Many seal populations are exhibiting strong recoveries from past depletions:
 - in NW Atlantic the grey seal population has increased from 7500 animals (in 1960) to over 0.5 million animals at present
 - ➤ In Baltic, 4000 grey seal in late 1970s; at present 60 000 seals
- These recoveries represent a remarkable conservation success, but also serious problems:
 - > the unintended consequences of recoveries have created complex issues for resource managers to solve
 - ➤ Note! In some regions, seals provide livelihoods in tourism business
- The current management approach in the Baltic Sea strongly mandates the protection of seals:

Failure to implement an ecosystem-based approach

- Conservation objectives for charismatic species are often established as nonnegotiable.
 - ➤ When something is hacked into the "holy book", it is there and stays there.
- In real life, management objectives concerning seals and fish stocks may be highly contradictory.
- Managers must confront various trade-offs:
 - > Should managers allow grey seals to continue to increase and accept the serious impacts?
 - Or increase grey seal removals?
 - Or find alternative solutions (and combinations)?
- An efficient and perhaps most sensible approach to ecosystem restoration would be the synchronous recovery of predators and prey.

Conclusions

- Baltic grey seal population has reached a sustainable abundance and is not at risk (approaching the carrying capacity).
- Protection should no more be the sole objective of the grey seal management.
 - ➤ the level of protection should match with the need of protection
- We need to find an optimal balance between the size of grey seal population and the viability of the fishing sector.
- The current criteria regarding grey seal protection in Baltic Sea are not justified from social, cultural and ecological point of views.

Selected papers (1)

Blomquist, J., Waldo, S. 2021. Seal interactions and exits from fisheries: insights from the Baltic Sea cod fishery. ICES Journal of *Marine Science*.

Lehtonen, E. & Suuronen, P. 2004. Mitigation of seal-damages in salmon and whitefish trap-net fishery by modification of the fish bag. *ICES Journal of Marine Science* 61: 1195-1200.

Suuronen, P., Siira, A., Ikonen, E., Riikonen, R., Kauppinen, T., Aho, T., Lunneryd, S-G., Hemmingsson, M., Königson, S., Fjälling, A., Westerberg, H. & Larsen, F. 2004. Mitigation of seal damages by improved fishing technology and by alternative fishing strategies. Final Report of Project 661045-30248 (2004), Journal No: 66010.21.138/02, Nordic Council of Ministers. 38 p.

Kauppinen, T., Siira, A. & Suuronen, P. 2005. Temporal and regional patterns in seal-induced catch and gear damage in the coastal trap-net fishery in the northern Baltic Sea: effect of netting material on damages. *Fisheries Research* 73: 99-109.

Suuronen, P., Siira, A., Kauppinen, T., Riikonen, R., Lehtonen, E. & Harjunpää, H. 2006. Reduction of seal-induced catch and gear damage by modification of trap-net design: Design principles for a seal-safe trap-net. *Fisheries Research 79: 129-138.*

Jounela, P., Suuronen, P., Millar, R.B. & Koljonen, M-L. 2006. Interactions between grey seal (*Halichoerus grypus*), Atlantic salmon (*Salmo salar*), and harvest controls on the salmon fishery in the Gulf of Bothnia. *ICES Journal of Marine Science 63: 936-945.*

Lehtonen, E. & Suuronen, P. 2010. Live-capture of grey seals in a modified salmon trap. *Fisheries Research*, 102: 214-216.

Suuronen, P. & Lehtonen, E. 2012. The role of salmonids in the diet of grey and ringed seals in the Bothnian Bay, northern Baltic Sea. *Fisheries Research* 125-126: 283-288.

Lehtonen, E., Lehmonen, R., Kostensalo, J., Kurkilahti, M. & Suuronen, P. 2022. Feasibility and effectiveness of seal deterrents in coastal trap-net fishing – development of a novel portable deterrent. *Fisheries Research*, *In Press*

Selected papers (2)

Königson, S., Fjälling, A., and Lunneryd, S.-G. 2007. Grey seal induced catch losses in the herring gillnet fishery in the northern Baltic. NAMMCO Scientific Publications, 6: 203–213.

Königson, S., Lunneryd, S.-G., Stridh, H., and Sundqvist, F. 2009. Grey seal predation in cod gillnet fisheries in the Central Baltic Sea. Journal of Northwest Atlantic Fisheries Science, 42: 41–47.

Königson, S., Fjalling, A., Berglind, M., Lunneryd, S.-G. 2013. Male grey seals specialize in raiding salmon traps, Fish. Res. 148: 117–123, https://doi.org/10.1016/j. fishres.2013.07.014.

Königson, S. J., Fredriksson, R. E., Lunneryd, S.-G., Strömberg, P., and Bergström, U. M. 2015. Cod pots in a Baltic fishery: are they efficient and what affects their efficiency? ICES Journal of Marine Science, 72: 1545–1554.

Lunneryd, S. G., Boström, M. K., and Aspholm, P. E. 2015. Sealworm *Pseudoterranova decipiens* infection in grey seals *Halichoerus grypus*, cod *Gadus morhua* and shorthorn sculpin *Myoxocephalus scorpius* in the Baltic Sea. Parasitology Research, 114: 257–264.

Svels, K., Salmi, P., Mellanoura, J., Niukko, J., 2019. The impacts of seals and cormorants experienced by Baltic Sea commercial fishers. Natural resources and bioeconomy studies 77/2019. Natural Resources Institute Finland, Helsinki. 50 p.

Waldo, A., and Johansson, M. 2019. Fiske och säl—en analys av möjligheter till samexistens. AgriFood Fokus 2019: 2 (in Swedish).

Waldo, A., Johansson, M., Blomquist, J., Jansson, T., Königson, S., Lunneryd, S. G., Persson, A. et al. 2020a. Local attitudes towards management measures for the co-existence of seals and coastal fishery - a Swedish case study. Marine Policy, 18: 104018.

Waldo, S., Paulrud, A., Blomquist, J., 2020b. The economic costs of seal presence in Swedish small-scale fisheries. ICES Journal of Marine Science, 77: 815–825.

