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By-catch species from tropical tuna purse seine fishery have been affected by fishery

pressures since the last century; however, the habitat distribution and the climate

change impacts on these species are poorly known. With the objective of predicting the

potential suitable habitat for a shark (Carcharhinus falciformis) and a teleost (Canthidermis

maculata) in the Indian, Atlantic and Eastern Pacific Oceans, a MaxEnt species

distribution model (SDM) was developed using data collected by observers in tuna

purse seiners. The relative percentage of contribution of some environmental variables

(depth, sea surface temperature, salinity and primary production) and the potential

impact of climate change on species habitat by the end of the century under the A2

scenario (scenario with average concentrations of carbon dioxide of 856 ppm by 2100)

were also evaluated. Results showed that by-catch species can be correctly modeled

using observed occurrence records and few environmental variables with SDM. Results

from projected maps showed that the equatorial band and some coastal upwelling

regions were the most suitable areas for both by-catch species in the three oceans

in concordance with the main fishing grounds. Sea surface temperature was the most

important environmental variable which contributed to explain the habitat distribution of

the two species in the three oceans in general. Under climate change scenarios, the

largest change in present habitat suitability is observed in the Atlantic Ocean (around

16% of the present habitat suitability area of C. falciformis and C. maculata, respectively)

whereas the change is less in the Pacific (around 10 and 8%) and Indian Oceans (around

3 and 2%). In some regions such as Somalia, the Atlantic equatorial band or Peru’s

coastal upwelling areas, these species could lose potential habitat whereas in the south

of the equator in the Indian Ocean, the Benguela System and in the Pacific coast of
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Central America, they could gain suitable habitat as consequence of global warming. This

work presents new information about the present and future habitat distribution under

climate change of both by-catch species which can contributes to the development of

ecosystem-based fishery management and spatially driven management measures.

Keywords: by-catch, MaxEnt, silky shark, rough triggerfish, habitat suitability, climate change, tropical purse

seiners, ecosystem approach to fishery management

INTRODUCTION

Anthropogenic pressures such as exploitation, pollution,
introduction of non-native species and habitat destruction are
currently affecting the marine biodiversity and driving changes
in species composition and distribution (Worm et al., 2006;
Jones et al., 2013).The marine ecosystem is also being impacted
by climate change in some habitats and species (e.g., Hoegh-
Guldberg and Bruno, 2010). Thus, global warming may change
the oceanographic conditions of the oceans forcing to the pelagic
species adapt to them by shifting their distributions (Komoroske
and Lewison, 2015). However, the complex interactions between
climate change and fishing on the species are difficult to assess
(Jones et al., 2013). Commercial fisheries can alter marine
ecosystems by removing species with low reproductive rates,
altering size spectra and reducing habitat quality (Dayton et al.,
1995). The tropical tuna purse seine fishery, one of the most
important fisheries of the world in terms of economic and
ecological significance, captures by-catch or the “part of the
capture formed by non-target species, which are accidentally
caught” (Hall and Roman, 2013). The by-catch in the purse seine
fishery is normally discarded dead by their low economic value.
However, they can be also retained on board as by-product or be
landed and sold in local markets (Amandè et al., 2010). In any
case, by-catch has negative connotation because it is a wasteful
use of resources (if they are not retained or sold) and due to
conservation, economic and ethical concerns (Kelleher, 2005).

By-catch is comprised of a large variety of species. In
particular, some of these species, such as sharks are vulnerable
to fishing due to its large body sizes, slow growth rates and late
maturation (“k” strategy species) which make them especially
sensitive to overexploitation (Poisson, 2007; Froese and Pauly,
2014).

Even thoughmost of pelagic sharks are caught by longliners or
other fishing gears (Gilman, 2011), there is a need to reduce the
incidental catches of sharks made by purse seiners. Concretely,
the silky shark (Carcharhinus falciformis) represents high % of all
sharks (around 85%) caught by the purse seine fishery (Amandè
M. et al., 2008; Hall and Roman, 2013) and reduce their mortality
is one of the major objectives of the Ecosystem Approach to
Fishery Management (EAFM). Silky sharks play an important
role as tope predators in the ecosystem, with the capacity to
influence community structure and essential to the maintenance
and stability of food webs (Duffy et al., 2015).

In contrast, other by-catch fish species, such as rough
triggerfish (Canthidermis maculata) are more abundant, have
higher reproductive rates (“r” strategy species) and their
populations are not overexploited. However, little is known about

the biology, ecology, and role of this important species of the
ecosystem.

Because the issue of by-catch is a recognized cause of
biodiversity loss, improving our knowledge about the changes in
both common and vulnerable by-catch species and their habitats
is necessary to support conservation plans and to account for the
impact of climate change on their populations (Cheung et al.,
2012; Nguyen, 2012).

Thus, species distributions models (SDM), also called
“habitat” models, are useful tools to determine species habitat,
manage threatened species, and identifying special areas of
interest for biodiversity (Franklin andMiller, 2009). Such models
predict the probability of occurrence of species in an area where
no biological information is currently available. Some authors
believe that for any successful application of the Ecosystem
Approach to Fishery Management (EAFM), impact of climate
change in species distribution range should be considered
(Nguyen, 2012). Thus, modeling species distribution under
different climate change scenarios provide also useful ways to
project species distribution changes anticipating consequences
of global warming on marine ecosystems (Khanum et al., 2013;
Chust et al., 2014; Villarino et al., 2015).

Although SDM have been applied to fisheries research (e.g.,
Chust et al., 2014), and its use is increasing, it is still scarcely
applied in comparison with terrestrial systems (Thuiller et al.,
2005; Kumar and Stohlgren, 2009; Muthoni, 2010). In the
case of tropical tuna purse seine fisheries, some studies have
described the distribution of the megafauna associated to the
tuna schools and taken by purse seiners (Peavey, 2010; Sequeira
et al., 2012). However, they have not yet been applied to compare
the potential habitat of vulnerable and more common by-catch
species and the changes of their distribution as consequence
of the climate change impact. The use of SMD in by-catch
species is an emergent issue of global interest which could
provide relevant information about the ecology and distribution
of these pelagic species which can contribute to adopt spatially
structure management measures. Therefore, the application of
these models in by-catch species will help to move toward the
correct implementation of the Ecosystem Approach to Fishery
Management (EAFM) in the tropical tuna purse seine fisheries.

The main objectives of this work are to: (1) predict the suitable
habitat for C. falciformis and C. maculata in the Indian, Atlantic
and Eastern Pacific Oceans on the basis of by-catch observations
from the tropical tuna purse seine fishery, (2) identify the relative
percentage of contribution of each environmental variable
considered to describe the species distributions in each Ocean,
and (3) evaluate the potential impact of climate change on their
species habitats under the A2 scenario (average concentrations of
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carbon dioxide of 856 ppm by 2100; Muthoni, 2010) by the end
of the century. We hypothesize that the potential suitable areas
for the two species could vary as climate and ocean conditions
change according to the specific oceanographic characteristics of
each Ocean.

MATERIAL

Study Area
Our study area comprises the Western Indian (20◦N/30◦S
and 30/80◦E), Eastern Atlantic (30◦N/15◦S and 40◦W/15◦E)
and Eastern Pacific Ocean (30◦N/20◦S and 70/150◦W) (see
Supplementary Material Figure 1). The three oceans are
considered separately in this study because they differ
greatly among them with respect to climate, oceanographic
characteristics, current dynamics and upwelling systems
(Tomczak and Godfrey, 2003).

Data Collection
Occurrences ofC. falciformis andC.maculata for the Atlantic and
Indian Ocean were obtained from the European Union observer
programs in support to its Common Fishery Policy under the
EU Data Collection Regulations (EC-DCR) No 1639/2001 and
665/2008. French [Institut de Recherche por le Développement
(IRD)] and Spanish scientific institutes [Instituto Español de
Oceanografía (IEO) and AZTI] were responsible for collecting
by-catch data in the Atlantic and Indian Oceans with a coverage
rate of around 10% of the fleet trips from 2003 to 2010/11
(Amandè et al., 2010). By-catch data from the tropical tuna purse
seine fisheries in the Eastern Pacific Ocean from 1993 to 2011
was collected by the Inter-American Tropical Tuna Commission
(IATTC) observer program, with 100% coverage of the purse
seine vessels of carrying capacity greater than 363 metric tons.
Those observer programs record all the captures in each set, in
numbers when possible and in weights otherwise. The objective
of those programs is to estimate the amount of by-catch species
in order to increase their knowledge which will allow developing
measures to reduce their incidental mortality. Thus, the objective
of the observer program is directly related with the collection of
information on those species and thus, the occurrence of those
species is well-collected (by trained observers using fish/shark
guides and photographs).

Up to date, the information available on by-catch species from
the observer programs is one of the most important in terms of
fishery dependent data. It has allowed publishing diverse studies
which provide useful information on the ecology, conservation
and habitat distribution of these pelagic species (Gaertner et al.,
2002; Minami et al., 2007; Watson, 2007; Amandè J. M. et al.,
2008; Amandè M. et al., 2008; Martínez-Rincón et al., 2009;
Amandè et al., 2010; Gerrodette et al., 2012; Hall and Roman,
2013; Torres-Irineo et al., 2014; Lezama-Ochoa et al., 2015).
This is why we consider it valid to the meet the aforementioned
objectives.

The data recorded by observers in this study included
information about the position of the set and the by-catch level
of C. falciformis and C. maculata.

In this study, both by-catch species were selected to contrast a
vulnerable with a common species. These species are frequently
caught in tuna purse seine gear (Hall and Roman, 2013).
Moreover, they also have scientific interest, economic and social
importance and adequate information available for the Indian,
Atlantic, and Pacific Oceans. For that reason, we selected both
by-catch species based on their ecological importance, but also
on the availability of the most complete data to develop the
SDM correctly. The silky shark, C. falciformis (Müller and
Henle, 1839), is a pelagic species vulnerable to fishing and
listed on the IUCN (Commission, 2000) (www.iucn.org) as Near
Threatened. Rough triggerfish or spotted oceanic triggerfish, C.
maculata (Bloch, 1786), is an epipelagic species which inhabits
temperate and tropical waters (46◦N–18◦S) and usually discarded
dead. Despite the fact that the two by-catch species have
many ecological differences, they both are tropical species and
is expected that their potential range distribution be similar.
Although these species usually appear in FAD sets of the fishery,
they can be also found in Free School sets.

A total of 1013 occurrences (59 in Free School sets and 954
in FAD sets) were observed in the Indian Ocean, 370 (79 in
Free School sets and 291 in FAD sets) in the Atlantic Ocean and
28,866 occurrences (1887 in Free School sets and 26,979 in FAD
sets) in the Eastern Pacific Ocean for C. falciformis; whereas 656
(21 in Free School sets and 976 in FAD sets), 997 (12 in Free
School sets and 644 in FAD sets) and 29,874 (247 in Free School
sets and 29,627 in FAD sets) occurrences were observed for C.
maculata in the Indian, Atlantic and Pacific Ocean, respectively.
In the Pacific Ocean 1000 subsamples were randomly selected to
compare similar number of sets between oceans.

With the aim of obtaining the potential habitat for these
two species, the main types of sets (FAD and Free School)
were combined for the analyses. We combine information from
both fishing modes to show the entire range distribution of the
species, as sampling sites of both types of fishing provide useful
information to map the occurrence of both species in relation
to local environmental conditions. In the case of FAD sets, we
justified its inclusion in the study as both by-catch species can
appear in the same areas for each fishing mode (Lezama-Ochoa
et al., 2015) (see Supplementary Material Figure 7). Therefore, on
the scale of the area modeled (with reference to the movement
of the FAD) not matter as the tropical area does not show
high oceanographic variability (Longhurst and Pauly, 1987). In
addition, the by-catch species can be aggregated to a FAD and
thus, be attached to the movement of the FAD for a while
(Fréon and Dagorn, 2000; Castro et al., 2002; Girard et al., 2004).
However, as they are not always associated to the FAD, these
species can leave the FADwhen environmental conditions are not
optimal (López, 2015).

Environmental Variables
Environmental data were extracted from the AquaMaps database
(Kaschner et al., 2008) at 0.5◦ resolution and stored as sets
of cell attributes in a Half-degree Cell Authority File (HCAF)
along with their associated Land Ocean Interactions in the
Coastal Zone (LOICZ) (http://www.loicz.org) and C-squares
ID numbers (http://www.marine.csiro.au/csquares). The HCAF
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contains such environmental attributes for a grid of 164, 520 half-
degree cells over oceanic waters. We considered 4 environmental
variables as potential predictors of C. falciformis and C.
maculata habitat distribution: depth, sea surface temperature
(SST), salinity, and primary production (Prim. Prod). These
environmental variables were selected by their general relevance
for (epi) pelagic species and their relation to the specific
oceanographic conditions in each Ocean (Sund et al., 1981;
Martínez Rincón, 2012; Arrizabalaga et al., 2015). Depth was
selected because it may mark the difference between the coast,
the open ocean or other geological features such as seamounts,
marine trenches, or ridges. Cell bathymetry was derived from
ETOPO 2 min negative bathymetry elevation. Sea surface
temperature was selected because it has a strong impact on the
spatial distribution of marine fish. Concretely, it is important in
areas where some phenomenon such as “El Niño” could alter
the normal oceanographic conditions and fishery production
(Fiedler, 2002; Hoegh-Guldberg and Bruno, 2010). Salinity is
important for the fish’s osmoregulation (Lenoir et al., 2011)
and primary production determines important fishing habitats
in relation with the chlorophyll concentration in equatorial
and coastal upwelling areas. Temperature, salinity, and primary
production were modeled by their annual mean and projected to
the future by the IPSL model. All variables (see Supplementary
Material Figure 2) were converted to raster files with the
“raster” package” in R (Hijmans and Van Etten, 2012). The
environmental variables used and their values and characteristics
are summarized and explained in Tables 1, 2.

METHODS

Habitat Modeling
MaxEnt (Phillips et al., 2006) is one of the most used species
distribution modeling method that estimates the probability
of species distribution based on continuous or categorical
environmental data layers (Franklin and Miller, 2009). The
model implements a sequential-update algorithm to find an
optimum relation between environmental variables and species
occurrence based on the maximum entropy principle (Elith et al.,
2011). The MaxEnt logistic output was used as a suitability
index [ranging from not suitable (0) to suitable (1)], which is
interpreted as a probability of occurrence, conditional on the
environmental variables used to construct the model.

Response curves were generated to analyze the species
response to a given environmental gradient. Although MaxEnt
can fit complex relationships to environmental variables, we

chose to only fit linear and quadratic relationships due to the
difficult interpretation of more complex relationships (Louzao
et al., 2012). MaxEnt species distribution model was chosen in
this work because it is considered one of the best modeling
techniques (Anderson et al., 2006) which shows higher predictive
accuracy than GLMs, GAMs, BIOCLIM, or GARP distribution
models (Franklin and Miller, 2009).

In addition, this type of model is useful to obtain an overall
perspective of their habitat with different number of samples
and few predictors. Thus, MaxEnt is useful for modeling pelagic
species with only-occurrences data and in environments where is
difficult to obtain this information because of the complexity of
the marine ecosystem and the low variability of its oceanography.

Prior to modeling, strongly “correlated” [correlation (r) >0.6]
environmental predictors were identified by estimating all
pair-wise Spearman rank correlation coefficients. This step is
necessary to find any collinearity between explanatory variables
(Louzao et al., 2012). In addition, we evaluated percentage of
contribution of the environmental variables to theMaxEnt model
based on a jackknife procedure, which provides the explanatory
power of each variable when used in isolation.

Suitability maps for C. falciformis and C. maculata were
constructed using the MaxEnt algorithm with “dismo” package
in R software (Hijmans et al., 2013).

Pseudo-Absence Data Generation
The occurrences for silky shark and rough triggerfish were
obtained from the same dataset in each Ocean. All the
sampled occurrences were selected in the Indian Ocean and
Atlantic Ocean dataset. In contrast, in the Pacific Ocean 1000
subsamples were randomly selected to compare similar number
of occurrences between oceans. The total fishing effort is showed
for each Ocean in Supplementary Material Figure 3.

The absence of species in a set may be explained by three
reasons: (1) the species was not present, (2) the species was
present but escaped from the net and it was not captured or
recorded, (3) the species was captured but it was not recorded
by the observer. The species absence in a specific set could be
reconstructed from the general species list but introduces a risk of
creating erroneous data. In this work, shark and triggerfish data
was considered presence-only, as true absences were unknown.
Where absence data are unavailable to use in habitat models,
an alternative approach is to generate pseudo-absences that
should, ideally, also account for any spatial bias in the sampling
effort (Phillips et al., 2009). For that reason, we have generated
pseudo-absences for model evaluation purposes. We generated

TABLE 1 | Environmental data used to generate the species distribution models (Present) and to project the data (Future) from AquaMaps database.

Variable Characteristics Present Future Units

Mean sea depth Cell bathymetry derived from ETOPO 2 min negative bathymetry elevation – – Meters

Sea surface temperature Modeled current and 2100. Mean annual sea surface temperature (IPSL

model A2 scenario)

2001–2010 2090–2099 Annual average degrees

Salinity Modeled current and 2100. Mean annual salinity (IPSL model A2 scenario) 2001–2011 2090–2100 Practical Salinity Units (PSU)

Primary production Proportion of annual primary production (IPSL model A2 scenario) in a cell Present 2100 Mg·m−3
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TABLE 2 | Mean of environmental variables in the three oceans considered in this study.

Indian Ocean Atlantic Ocean Eastern Pacific Ocean

Variables Measure Present A2 (2100) Present A2 (2100) Present A2 (2100)

Depth Mean 3493.8 3493.8 4342.6 4342.6 3722.2 3722.2

SST Mean 26.9 28.9 25.1 27.0 26.0 27.8

Salinity Mean 36.0 36.0 36.0 36.2 35.6 35.7

Prim. Prod Mean 58.3 46.6 63.7 53.9 116.7 91.7

See Table 1 for the explanation of the variables and data sources, and the maps in the Supplementary Material (Figure 2) for the spatial distribution of the variables.

the pseudo-absences following the next method: pseudo-absence
points were selected randomly from across the sampled area in
each ocean. Furthermore, an equal number of pseudo-absence
points as presences points were used for the random selection
method (Senay et al., 2013). We generated each set of pseudo-
absences excluding the presence points using the randomPoints
function from the “dismo” package in R (SupplementaryMaterial
Figure 4).

Model Validation
A validation step is necessary to assess the predictive performance
of the model using an independent data set. The most common
approach used is to split randomly the data into two portions:
one set used to fit the model (e.g., 80% of data), called the
training data, and the other used to validate the predictions
with the presences and pseudo-absences occurrences (e.g., 20%
of data), called the testing data (Kumar and Stohlgren, 2009).
Cross-validation is a straightforward and useful method for
resampling data for training and testing models. In k-fold cross
validation the data are divided into a small number (k, usually
five or ten) of mutually exclusive subsets (Kohavi, 1995). Model
performance is assessed by successively removing each subset, re-
estimating the model on the retained data, and predicting the
omitted data (Elith and Leathwick, 2009). In this study, a k-
fold partitioning method (with k = 5) was used to construct the
testing (20%) and training data (80%) from occurrence records.
Finally, we ran MaxEnt five times for the k-fold partitioning
method. We calculated the mean of the 5 MaxEnt predictions
to obtain an average prediction and coefficient of variation of
predictions.

Model Evaluation
The accuracy of the model and the five replicate model
cross-validations were evaluated using the area under the
receiver operating characteristic curve (AUC) (Fielding and
Bell, 1997). Given the defined threshold value, a confusion
matrix or error matrix (Pearson, 2007), which represents a
cross-tabulation of the modeled occurrence (presence/pseudo-
absence) against the observations dataset, was also calculated
based on the following indexes (Pearson, 2007): sensitivity
(proportion of observed occurrences correctly predicted),
specificity (proportion of pseudo-absences correctly predicted),
accuracy (proportion of the presence and pseudo-absence
records correctly assigned), and omission error (proportion of
observed occurrences incorrectly predicted). The modeled

probability of species presence was converted to either
presence or absence using probability thresholds obtained
using two criteria: sensitivity is equal to specificity, and
maximization of sensitivity plus specificity, following
Jiménez-Valverde and Lobo (2007). Thus, the cases above
this threshold are assigned to presences, and below to
absences.

AUC values and accuracy values from the confusion matrix
range in both cases between 0.5 (random sorting) and 1 (perfect
discrimination). The comparison between the accuracy of the
model with all observations and the accuracy of the cross-
validated model permits the detection of model overfitting
(Chust et al., 2014).

Projections for the Twenty-First Century
Habitat suitability of C. falciformis and C. maculata was modeled
at present (2001–2010/11) and future (2090–2099/2100)
conditions under the A2 climate change scenario (Muthoni,
2010). The A2 scenario (concentrations of carbon dioxide of 856
ppm by 2100) (Muthoni, 2010; Rombouts et al., 2012), which
was used in this study describes a very heterogeneous world
with high population growth, slow economic development
primarily regionally oriented and slow technological
change.

The same environmental variables used for the present
conditions were also obtained from the Aquamaps database for
the future climate under the A2 scenario (Kaschner et al., 2008).

Once the habitat models were built on the basis of present
environmental data and occurrence observations, they were
projected to future climate conditions to assess the habitat
distribution response to climate change. Changes on species
suitable habitat distribution were assessed by spatial overlap
between suitable areas predicted under present and future
scenarios. Percentages of gain and loss of suitable habitat from
present to future modeled conditions were calculated for the
two species. The percentage of suitable habitat which remains
suitable in the future is defined as the percent of grid cells suitable
for the species both at present and future. From the current
suitable habitat, the grid cells predicted to become unsuitable
represented the percentage of habitat loss. The percentage of
new suitable or gained habitat (habitat unsuitable at the present
but suitable at the future) is calculated as the ratio between the
number of new grids cells and the habitat size not currently
suitable (i.e., grid cells not suitable at the present) (Thuiller et al.,
2005).
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RESULTS

Habitat Suitability Models
The resulting predicted habitat suitability maps for C. falciformis

and C. maculata are depicted in Figures 1, 2.

The MaxEnt model predicted current potential suitable
habitat for silky shark: (a) along the equatorial band (10◦N–10◦S/

50◦–90◦E) in the Indian Ocean, (b) around Cap Lopez (5◦S–
10◦E) and the north equatorial band (0◦–10◦N) in the Eastern
Atlantic Ocean and c) along both sides of Equator, especially
in the northern hemisphere (0–10◦N) and near the coast in the
Eastern Pacific Ocean.

The most suitable habitats for rough triggerfish were
predicted: (a) around the equatorial band (10◦N–10◦S/50◦–90◦E)

FIGURE 1 | Predicted current conditions (first column), future conditions (second column), and differences between future and present conditions

(third column) for habitat suitability areas for Carcharhinus falciformis in the Indian, Atlantic and Eastern Pacific Ocean. The maps (first and second

columns) show the probability of occurrence of each species from lowest (blue) to highest value (red).
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FIGURE 2 | Predicted current conditions (first column), future conditions (second column), and differences between future and present conditions

(third column) for habitat suitability areas for Canthidermis maculata in the Indian, Atlantic, and Eastern Pacific Ocean. The maps (first and second

columns) show the probability of occurrence of each species from lowest (blue) to highest value (red).

in the Indian Ocean, (b) along the Equator in the northern
hemisphere (0–10◦N/10–25◦W) and to a lesser extent, around
Cap Lopez (5◦S–10◦E) in the Atlantic Ocean, and (c) along
the Equator (10◦N–10◦S/80–110◦W) and close to the coast
of Central and South America (10◦N-10◦S/80◦-90◦W) in the
Eastern Pacific Ocean. In general, model predictions showed
that both by-catch species were found with higher probability
(the lower the CV, the lower the uncertainty) in the Indian

and the Pacific Ocean (represented by light blue color in the
maps). Rough triggerfish showed better values (lower coefficient
of variation along all the study area) in general than silky shark.
In contrast, CVs were found for both species in the Atlantic
Ocean, but out of their potential habitat distribution. All those
areas were consistently identified as important due to the low
coefficient of variation in predictions (Supplementary Material
Figure 5).
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The percent contribution of each environmental variable
for both species in each Ocean is shown in Table 3. Results
from Jackknife procedure are showed in Supplementary Material
Figure 6. Low correlations were found among environment
variables (r < 0.6) in each Ocean and in general (Supplementary
Material Table 1). Therefore, they all were included in the
analysis.

Sea surface temperature and depth were respectively the most
important predictors for silky shark (86.3 and 13.9%) and rough
triggerfish (81 and 17.8%) in the habitat models in the Indian
Ocean. Sea surface temperature and salinity were the variables
that most contributed to the model for silky shark (85.5 and
11.5%) and rough triggerfish (91.1 and 4.1%) in the Eastern
Atlantic Ocean. Finally, in the Eastern Pacific Ocean, sea surface
temperature was the most important variable for silky shark with
66.3% contribution and primary production for rough triggerfish
(56.6%). In general, sea surface temperature was the variable that
most contributed to explain the habitat distribution for the two
species in each ocean (Table 3).

The relationships between presence probability and
environmental variables for each Ocean are illustrated in
Figures 3, 4. Silky shark and rough triggerfish presence
probability increased with sea surface temperature and decreased
linearly with salinity, whereas non-linear relationships were
found in some cases for depth and primary production.
Concretely, maximum presence probability was found at
high temperatures (26–30◦) and low salinities (20–30 psu)
for both by-catch species in all oceans. Both by-catch species
showed preference by deep ocean regions (5000–6000 m)
in the Indian Ocean and by intermediate deep regions
(3000–4000 m) in the Atlantic and Pacific Ocean (with the
exception of silky shark in the Atlantic; its presence probability
decreased with depth). Furthermore, probability of presence
for both species was found to be higher at low primary
production concentrations (50–100 mg·m−3) in the Indian
Ocean, intermediate concentrations (100–150 mg·m−3) in the
Atlantic Ocean and at high concentrations (200–300 mg·m−3) in
the Pacific Ocean.

Model Evaluation
AUC values and accuracy indexes for all-observations (t) and
cross-validated (k) models are shown in Table 4. MaxEnt models
for both species in all oceans showed good agreement between
AUC values (0.60–0.80) and accuracy values for cross-validated

models (0.50–0.75). The intermediate-high accuracy values for
cross-validated models, compared with the models using all
observations, indicate that the models were not over-fitted.
Sensitivity and specificity values for all observations and cross-
validated models showed slightly high values for both species,
with the exception of the Indian Ocean (around 0.55), where
these values were lower (Table 4). The omission error was low
in general (0.05–0.08), indicating that the model performed well.
Finally, low-intermediate threshold values were obtained in all
cases (around 0.45), showing good proportion of predicted area
suitability (Pearson, 2007).

In general, distribution models for both by-catch species
showed reasonable model performance, although rough
triggerfish showed better accuracy values (between 0.60 and
0.80) than silky shark (around 0.60–0.70) in each Ocean. At the
same time, the Indian Ocean had the worst performance values
(around 0.50–0.60) for both by-catch species in comparison with
the Atlantic (0.7/0.8) and Pacific Oceans (0.65/0.75). Finally, to
verify that the occurrences randomly taken in the Pacific Ocean
were a good representation of the species distribution, the model
it was run several times with different sets of 1000 occurrences.
In all cases, the results showed high accuracy values.

Projected Habitat Suitability Differences
The projected habitat suitability maps for C. falciformis and
C. maculata under A2 future scenario of climate change and
differences between future and present conditions (binary maps)
for each Ocean are depicted in Figures 1, 2, respectively. The
percentages of suitable and loss/gain habitat suitability for silky
shark and rough triggerfish in the Indian, Atlantic, and Pacific
Oceans are shown in Table 5.

Under the A2 scenario for 2100, 3.1% of the present habitat
for silky shark was predicted to change in the future in the Indian
Ocean (Table 5 and Figure 1). The gained areas were mostly
located in the south (mostly around 12◦S) while the lost areas
were located near the Somali coast, the central part of the study
area and the south of India. In the Eastern Atlantic Ocean, under
climate change impacts, the model predicts that silky shark could
gain some habitat north of the equator and in the Cap Lopez area
and would loss habitat around the equatorial band between 0 and
10◦S (Table 5, Figure 1), with a total change of the present habitat
of 15.9%. In the Eastern Pacific Ocean, under the A2 scenario
of climate change, 10.4% of the present habitat was predicted
to change in the future. Habitat is predicted to be lost near the

TABLE 3 | Logistitc model output values: percentage of contribution of each environmental variable with all observations (t) and cross-validated (k) for

Carcharhinus falciformis and Canthidermis maculata in the Indian (IO), Atlantic (AO), and Eastern Pacific Ocean (EPO).

Ocean By-catch species SST (t/k) Salinity (t/k) Depth (t/k) Prim.Prod (t/k)

IO Carcharhinus falciformis 65.5/86.3 0/1.5 13.5/13.9 21.1/20.9

Canthidermis maculata 71.5/81 0.2/0.7 14.2/17.8 14/10.6

AO Carcharhinus falciformis 61.8/85.5 16.7/11.5 15.1/11.3 6.3/1.6

Canthidermis maculata 90.7/91.1 2.5/4.1 3.3/3.2 3.5/1.5

EPO Carcharhinus falciformis 64.6/66.3 1.5/0.1 2.4/2.0 31.5/31.6

Canthidermis maculata 37.9/41 0.1/0.2 5/2.1 57/56.6
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coastal upwelling area of Peru, and in the equatorial band (10◦N
and 10◦S), while the gains would occur north and south of the
Equator (10◦N and 10◦S) and along the coast of Central America
(Nicaragua, Costa Rica, Panamá, Colombia) in an area called
“Panama Bight” (Forsbergh, 1969).

On the other hand, because of changes in oceanographic
conditions, 2.4% of the present habitat was predicted to change in
the future for rough triggerfish in the Indian Ocean. The gained
and lost areas were detected in similar areas as for silky sharks.
In the Eastern Atlantic Ocean, under the climate change scenario
used, 15.7% of the present habitat was predicted to change in the
future. The climatic model for 2100 projected a potential gain
for rough triggerfish of habitat in the Cap Lopez area and the

north of the Equator and loss of habitat in the north (0–10◦N/20–
40◦W) and south (0–10◦S/0–10◦E) of the Equator. Finally, under
the A2 scenario of climate change, 8.7% of the present habitat in
the Pacific was predicted to change in the future; with an increase
in suitable habitat in the north and south of Equator (around
90–110 and 125–140◦W). The model predicted loss of habitat
at south of Equator (around 100–110◦W) and in the coastal
upwelling area of Peru (Table 5, Figure 2).

DISCUSSION

The influence of fishing pressure and climate change on
marine ecosystems and more particularly on species distribution

FIGURE 3 | Present response curves (sea surface temperature, salinity, depth, and primary production) for Carcharhinus falciformis in the Indian (first

column), Atlantic (second column), and Eastern Pacific Ocean (third column).

Frontiers in Marine Science | www.frontiersin.org 9 March 2016 | Volume 3 | Article 34

http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Lezama-Ochoa et al. Potential Habitat Distribution of By-Catch Species

FIGURE 4 | Present response curves (sea surface temperature, salinity, depth, and primary production) for Canthidermis maculata in the Indian (first

column), Atlantic (second column), and Eastern Pacific Ocean (third column).

has become a general concern (Jones et al., 2013). In
this study, we show that species distribution habitats for
common and threatened by-catch species can be modeled
using MaxEnt species distribution model, even with a limited
set of environmental variables. The application of SDM
on by-catch species opens a new range of possibilities to
study more pelagic species in different areas and fisheries.
Potential habitat of species fished in different fisheries could
provide important information about species distribution
range in the open sea and useful for spatially structured
management plans.

We obtained reasonable accurate values using MaxEnt species
distribution model, as Peavey (2010) and Sequeira et al. (2012)
did. Moderately high AUC and overall prediction accuracy

around 0.70 were found for both by-catch species in different
oceans. Our distribution models were able to predict habitat
suitability for silky shark and rough triggerfish over a more
extensive area than that covered only by the observer data
(ocurrences). The observer dataset we used contained only
silky shark and rough triggerfish presences. We addressed this
drawback by randomly generating pseudo-absences (Senay et al.,
2013) and running five times the prediction to account for
the robustness of the models. However, the correct selection
of pseudo-absence data directly affects the accuracy of model
prediction. For that reason, the accurate identification of the area
(in this case, the sampled area and not areas out of the sampled
area) for the creation of pseudo-absences was essential for the
correct model performance.
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TABLE 4 | Model evaluations with all observations (t) and cross-validated (k) for Carcharhinus falciformis and Canthidermis maculata in the Indian (IO),

Atlantic (AO), and Eastern Pacific Ocean (EPO).

Ocean By-catch species AUC(t/k) Sensitivity(t/k) Specificity(t/k) Accuracy(t/k) Omission(t/k) Threshold

IO Carcharhinus falciformis 0.63/0.62 0.68/0.86 0.56/0.41 0.63/0.50 0.42/0.08 0.41

Canthidermis maculata 0.64/0.62 0.70/0.84 0.56/0.44 0.64/0.52 0.39/0.08 0.46

AO Carcharhinus falciformis 0.76/0.77 0.80/0.84 0.64/0.63 0.72/0.66 0.24/0.05 0.50

Canthidermis maculata 0.82/0.83 0.74/0.78 0.79/0.77 0.77/0.77 0.29/0.05 0.40

EPO Carcharhinus falciformis 0.67/0.67 0.68/0.67 0.60/0.60 0.64/0.61 0.35/0.01 0.49

Canthidermis maculata 0.76/0.75 0.72/0.77 0.69/0.65 0.71/0.67 0.28/0.07 0.45

Threshold values obtained from maximization of sensitivity plus specificity.

TABLE 5 | Predicted changes in habitat suitability areas (in %) by the year 2100 for the A2 scenario of climate change for both by-catch species.

Oceans Species Loss Gain Suitable Total change

Present − Future (Loss + Gain)

Indian Ocean Carcharhinus falciformis 1.4 1.8 98.8 3.1

Indian Ocean Canthidermis maculata 1.0 1.4 99.0 2.4

Atlantic Ocean Carcharhinus falciformis 15.5 0.3 84.4 15.9

Atlantic Ocean Canthidermis maculata 15.4 0.2 84.5 15.7

Pacific Ocean Carcharhinus falciformis 9.9 0.4 90.1 10.4

Pacific Ocean Canthidermis maculata 7.0 1.7 92.9 8.7

Loss is the area that would no longer be suitable for the species. Gain is the area that would become suitable habitat due to the change. Suitable present-future is the area which will

remain suitable in the future. Total change is the area which will change in the future as consequence of gain and loss of habitat.

Habitat Suitability Areas
The analysis and modeling of by-catch data collected by
observer programs has provided predictions of the pelagic
distribution of two wide-ranging species. Thus, the predictive
maps produced by our models revealed that the regions close
to equatorial and upwelling regions were the most suitable
habitats for these species in the Atlantic, Indian, and Pacific
Ocean in correspondence to the main fishing grounds. These
areas are the most important in the tropical tuna purse
seine fisheries (Hall and Roman, 2013) because they are
characterized by warm waters, strong surface currents, upwelling
systems, and different wind patterns supporting a great variety
of organisms and in consequence, high marine biodiversity.
Lezama-Ochoa et al. (2015) and Torres-Irineo et al. (2014)
showed that higher numbers of species were found close to
coastal upwelling areas in the Indian Ocean associated to the
monsoon system and with the equatorial counter-current in the
Atlantic Ocean. In the Pacific Ocean, the higher numbers of
species were found at north of the Equator (10◦N) in an area of
marked frontal systems and near the coast of Central America
(mainly Costa Rica and Panama) [(Lezama-Ochoa et al., 2015,
submitted)]. Our results suggest that the distributions of these
two species coincide with the areas where the highest biodiversity
was found.

It is important to note that the use of this type of data is valid
since the information provided by the models reveals interesting
findings. Results showed some areas which can be suitable for
these species independent of the area of fishing effort. That means
these models provide new information (for example, at south

(20◦S–80◦E) and close to the Indian Continent in the Western
Indian Ocean, or the coast of Nigeria and Cameroon in the
Atlantic Ocean) of areas which can be suitable despite not being
fished. In contrast, other areas (for example, north and south
(15◦N–20◦S) in the Atlantic Ocean) which are located inside the
fishing effort area are not suitable for these species. It means
that both target and non-target species may have different habitat
distributions and preferences.

This study was compared with the results from Froese and
Pauly (2014) from AquaMaps (Kaschner et al., 2008). Both
works showed similar habitat preferences ofC. falciformis around
coastal and oceanic upwelling waters. However, Froese and Pauly
(2014) did not show any climatic projection for the future. In
the case of C. maculata, the habitat distribution published by
Froese and Pauly (2014) only frames the coastal areas, which
results in different distribution ranges and future projections
compared with our work. The differences were based on the
different sources of information used (museum collections,
different databases, literature references) compared to our work
which contains a large number of offshore observations since it
is based on observer programs covering the wide distribution
of the tropical tuna fisheries. In that sense, the presence data of
our sampling provides new information about the distribution
of the two species. This new information may be a result of the
expansion of the FAD fisheries.

The habitat models derived in this study suggest that C.
falciformis and C. maculata responded mainly to variation in SST
in the three oceans. These by-catch species are often distributed
in warm waters and aggregated around floating objects (e.g., logs,
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Fish Aggregating Devices) in productive areas (Dagorn et al.,
2013).

In the Western Indian Ocean, the monsoon system
determines the wind and current patterns of the area, with
coastal upwelling systems close to Somalia in summer and
Mozambique in winter. These systems are associated with
changes in the surface temperatures and therefore, affect the
habitat and distribution of the by-catch species. In addition, the
depth of the ocean basins seems to play an important role in the
habitat distribution of both by-catch species. The continental
shelf in the Indian Ocean is narrower than in the other oceans
and therefore, the distribution of the species in open ocean is
close to the coast (Tomczak and Godfrey, 2003).

In the Atlantic Ocean, the SST is also the most important
environmental variable followed by low salinity and high primary
production concentrations as a consequence of the Benguela
upwelling system (Tomczak and Godfrey, 2003).

In the Eastern Pacific Ocean, the SST plays an important
role in relation with ENSO conditions in equatorial and coastal
upwelling areas of the Pacific. Thus, determines tuna, other
teleost species and shark distributions around the “warm pool”
area close to the Gulf of Tehuantepec and Central America
(Martínez Arroyo et al., 2011). In addition, the primary
production is also important in the Eastern Pacific Ocean. The
equatorial and Peru eastern boundary currents are associated
with highly productive upwelling systems, which form some of
the most important fishing areas of the world (Fiedler, 1992).
Thus, these environmental variables had important implications
on the biogeographic patterns of both species abundance and
distribution in each Ocean.

Projected Habitat Suitability
The Intergovernmental Panel on Climate Change (IPCC)
estimates ocean warming in the top 100 m between 0.6 and
2.0◦C by the end of the twenty-first century (Collins et al.,
2013). Species may respond to climate change by shifting
their geographical or bathymetric distributions (horizontal or
vertical distributions) depending on the extent of the species
geographical ranges, dispersal mechanism, life-history strategies,
genetic adaptations, and biotic interactions or extinction factors
(Thuiller, 2004).

Our results suggest that climate change will affect the
distribution of these species depending on the oceanographic
conditions of each Ocean. In this study, changes in species
distribution as a consequence of climate change were
predominant around the equatorial band and in some cases,
around upwelling systems [Panama in the Eastern Pacific Ocean,
Benguela in the Atlantic Ocean (in a lesser extent)] where
fisheries are quite significant. This is not in agreement with
the general expectations of migration to deeper waters and
poleward shifting of marine fishes in response to sea warming
(Walther et al., 2002; Cheung et al., 2013). Moreover, climate
change can impact the strength, direction and behavior of the
world’s main currents and therefore, affecting also in this way the
species geographical distributions (Hoegh-Guldberg and Bruno,
2010).

Habitat Loss
The percentage of habitat suitability that could disappear, or
persist for each species is a goodway to assess the potential impact
of climate change at a regional scale (Thuiller, 2004).

If we focus on the habitats in each ocean, the Atlantic Ocean
temperatures are projected to increase due to the much larger
warming associated with increases of greenhouse gases in this
region (Change, 2007); and therefore, a greater and faster loss
of habitat in this area is expected. In the case of the Western
Indian Ocean, the area around the Somali coastal upwelling
system could be unsuitable for the two species as a response to
temperature warming, affecting one of the most diverse areas for
these by-catch species (Amandè et al., 2011; Lezama-Ochoa et al.,
2015).

With regard to the Eastern Pacific Ocean, the A2 climate
change scenario projected habitat losses around 8–10% for
both by-catch species around the coast of Peru and north and
south of the Equator (10◦N–10◦S). In that sense, some authors
suggested a reduction of primary production around these areas
as consequence of global warming (Gregg et al., 2003; Hoegh-
Guldberg and Bruno, 2010; Blanchard et al., 2012). The results
obtained in this work lead us to suggest that these zones could
be not suitable for studied by-catch species by 2100 if the
primary production is reduced; since these species depend on
high nutrient levels and the preys associated to those conditions.

Habitat Gain
Climate change induced some positive effects with gain of habitat
for both species in each Ocean. According to Bindoff et al. (2007),
the Indian Ocean has been warming in the last years except for
an area located at the latitude 12◦S along the South Equatorial
Current. Therefore, it is believed that this trend will continue in
the future. In that sense, our model projects a slight potential
colonization for the two by-catch species along this area (12◦S)
as a consequence of the positive effect of the ocean warming.

C. falciformis and C. maculata could gain new habitat in the
Atlantic Ocean near the Angola and Namibia coasts. Global
warming could increase the evaporation and, therefore, the
rainfall with a consequent increase in the flow of the rivers,
providing nutrients to feed plankton in the coastal areas (Justic
et al., 1998). Thus, the area located near the mouth of the Congo
River could increase its productivity and, hence, the habitat
suitability for by-catch species. Other possible explanation for
the increase in primary production in the western coast of Africa
could be that suggested by Hjort et al. (2012) who showed that
an increase in upwelling-favorable winds in the Benguela system
could increase primary production. This could benefit the habitat
suitability for some species around this area due to an increase of
nutrients supplies.

In the Eastern Pacific Ocean, a significant gain of habitat
suitability for both by-catch species as a consequence of the
increase in primary productivity around Central America is
expected by the end of the century. In this region, the
temperature increase in the continent as a consequence of global
warming will be higher than in the open ocean, which could
increase wind intensity favoring upwelling in the coast of Central
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America where three “wind corridors” play amajor role in coastal
production (Martínez Arroyo et al., 2011).

In general, there were not significant differences between the
percentages of habitat loss and habitat gain for each by-catch
species. High percentage of change of habitat was found in the
Atlantic Ocean, and a lesser extent, in the Pacific Ocean. In
contrast, the Indian Ocean didn’t show any relevant change on
their distributions. The global warming could impact more the
equatorial areas from the Pacific and Atlantic Oceans, which
share similar oceanographic features (Tomczak and Godfrey,
2003). The environmental processes in the tropical Indian Ocean,
in contrast, seem to play a different role in the diversity (Lezama-
Ochoa et al., 2015) and the habitat of the by-catch communities
as consequence of the strongest monsoon on Earth. For that
reason, the results were expected to be also different. The lack
of the permanent equatorial upwelling in the Indian Ocean (as
consequence of the steady equatorial easterlies) and the position
of the land mass in the north area, seems to influence in
the oceanography and environment of this area (Tomczak and
Godfrey, 2003).

In an environmental or fisheries management context the
question is not necessarily how the climate or ocean abiotic
conditions will change, but how the species of the ecosystem
might respond to these changes (Payne et al., 2015). We obtained
that both by-catch species respond in similar way to the future
climate changes. However, with respect to their populations, the
silky shark could be largely affected in the Atlantic and the Pacific
Ocean if nomanagementmeasure is taken to reduce its mortality.
Silky shark population should be considered more cautiously
since this is a vulnerable species less resilient to climate change
than small body-size organisms (Lefort et al., 2015). The use
of good practices onboard (Gilman, 2011) to increase the post-
release survivorship is the best option to reduce their mortality.
In addition, understanding its spatio-temporal distribution will
help to develop spatially structured mitigation or management
measures.”

In contrast, although a similar percentage of habitat loss
occurred in triggerfish, their population seems to be stable due
to its “r” life-strategy. Even so, it must take into account these
species in the future management plans.

Limitation of the Work
Accurately describing and understanding the processes that
determine the diversity and distribution of organisms is a
fundamental problem in ecology and always inevitably associated
with a degree of uncertainty (Payne et al., 2015). This uncertainty
is multifaceted and can be decomposed into several elements.
Identifying these different factors helps to better address
them for obtaining a better model performance. Two of the
most important uncertainties in species distribution models
(considered as empirical models, see Payne et al., 2015) are
structural and scenario uncertainties. Thus, the quality of
model outputs can depend on the variables (biological data
and environmental data) and the space-time scale considered
(Phillips et al., 2009; Payne et al., 2015). There is not best model,
and the choice should be driven by the question and the objective
of the study.

In this work, the MaxEnt habitat modeling method allowed
in an easy way to obtain essential information with few
environmental variables about pelagic species. However, the
gained experience leads us to discuss several aspects which must
be considered and improved applying future habitat models. The
selection of the occurrence by-catch data from the fishery not
targeting those species can lead to assume that the data quality
is not enough. However, we demonstrated that observer data
is been used in multiple ecological and habitat studies similar
to the one described here. Nevertheless, further increase of the
coverage rates (in the case of the Atlantic and Indian Ocean) and
the sample size is essential for doing comparisons between years
and periods.

The selection of the environmental variables was based in the
main oceanographic characteristics of each Ocean, and thus, as
showed by the results, the response curves explained correctly the
high mobility character of the species and their relationship with
the upwelling and surface current systems. However, the selection
of other environmental variables related with the ecology of the
species (nutrients, oxygen, etc...) could also improve the results.
The habitat model performed better at large spatial scales (in
the Atlantic and the Pacific Ocean) than at small scales (Indian
Ocean). The complex oceanographic processes in the Indian
Ocean compared with the Atlantic and Pacific Ocean, which
share some oceanographic features, could difficult the selection of
specific factors which explain the distribution of the two by-catch
species. Thus, a better selection of the environmental data and the
application of the other habitat models to compare predictions in
this Ocean would be further recommended.

Secondly, the lack of absence data was the most important
factor discussed and considered in this study. As we know that
the model with presences and absences performs better than the
only-presence models, we decided to generated and include the
pseudo-absences to evaluate the models. Within the numerous
ways of addressing the problem of generate pseudo-absences
(Barbet-Massin et al., 2012; Sequeira et al., 2012; Fourcade et al.,
2014), here it was solved with the generation of the same number
of pseudo-absences (randomly) as presences in places where
presences were not observed within the sampled area. However,
in future works, it would be worth to compare among different
ways to generate pseudo-absences.

The Applicability of Habitat Models on
Fisheries Management Plans
By-catch is a significant issue for the fishing industry, scientists
and managers, and it needs to be managed and mitigated.
Invasions and extinctions of by-catch species in an area can affect
not only their species distribution range, but also the marine
biodiversity, community structure, size spectra, and ecosystem
functions (Sala and Knowlton, 2006). In this context, by-catch
monitoring programs with observers onboard can be expensive
and sometimes difficult to implement. However, they are an
important source of data to identify suitable habitats to be used
in conservation biology field (Franklin and Miller, 2009).

Thus, there is still a need to develop SDM for other by-
catch species and/or habitats of interest for these species (e.g.,
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upwelling areas, seamounts, coastal areas) to investigate their
spatial distributions and to assess the effects that fishing and
climate change may have on those populations. Concretely, it
would be interesting to apply this habitat model in other tuna
target-species to describe their potential habitat distribution
and identify any possible overlap with the by-catch species.
Thus, the future gain areas by the by-catch species, provided
that target species distribution remains the same, could be act
as a refuge for by-catch species. Similarly, those losses areas
could be considered to be protected in future management
plans. Moreover, other habitat suitability distribution approaches
(such as ensembles of different algorithms) and other more
sophisticated and descriptive environmental predictors, as well
as new climate change scenarios may help to improve habitat
distribution projections.

Monitoring and understanding changes in by-catch species
distributions, in addition to those of the harvested species
(tunas), are necessary for a better understanding of the pelagic
ecosystem and toward a correct implementation of the EAFM.

CONCLUSIONS

Our model predicts that potential habitat distribution areas
for C. falciformis and C. maculata in the Atlantic, Indian, and
Pacific Oceans are close to equatorial and coastal upwelling
areas, and mainly associated with sea surface temperature.
These habitat distribution models, based on the information
collected by observer programs from the tropical tuna purse seine
fisheries in the three oceans, provide a good estimation of the
pelagic distribution of these wide-ranging by-catch species. The
global ocean warming could impact some of these unstable and
vulnerable ecosystems (mainly in the Atlantic and the Pacific
Ocean) affecting the distribution of these species in accordance
with the particular oceanographic conditions of each Ocean.
Under climate change scenarios, the largest change in present

habitat suitability was observed in the Atlantic Ocean (around
16% of the present habitat suitability area of C. falciformis and
C. maculata) whereas the change was less in the Pacific Ocean
(around 10 and 8%) and any significant change was observed in
the Indian Ocean (around 3 and 2%).
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